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The Great American Biotic Interchange is considered to be a punctuated

process, primarily occurring during four major pulses that began approxi-

mately 2.5 Ma. Central America and southeastern Mexico have a poor

fossil record of this dynamic faunal history due to tropical climates. Explora-

tion of submerged caves in the Yucatán, particularly the natural trap Hoyo

Negro, is exposing a rich and remarkably well-preserved late Pleistocene

fauna. Radiometric dates on megafauna range from approximately

38 400–12 850 cal BP, and extinct species include the ursid Arctotherium
wingei and canid Protocyon troglodytes. Both genera were previously thought

to be indigenous to and confined to South America and appear to represent

an instance of large placental mammals, descended from North American

progenitors, migrating back north across the Panama Isthmus. This discov-

ery expands the distribution of these carnivorans greater than 2000 km

outside South America. Their presence along with a diverse sloth assem-

blage suggests a more complex history of these organisms in Middle

America. We suggest that landscape and ecological changes caused by

latest Pleistocene glaciation supported an interchange pulse that included

A. wingei, P. troglodytes and Homo sapiens.
1. Introduction
North and South America were geographically separated for most of the

Cenozoic, resulting in distinct vertebrate communities. Faunal interchange

between the continents began in the late Cenozoic, and most dispersals occurred

after the Panama Isthmus developed. This biogeographic phenomenon, known as

the Great American Biotic Interchange (GABI), went in both directions [1–6] and

enabled the expansion of placental mammals to South America, including the

focus of this report, ursids and canids. Recently, researchers hypothesized

the isthmus developed approximately 10 Myr earlier than previously thought,

13–15 Ma [7], well before the first large-scale faunal interchange around 2.5 Ma

[5], suggesting a lag between continental connection and extensive migration [8].
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Figure 1. Specimen recovery in Hoyo Negro and map showing locations. (a) DP 5864 Arctotherium wingei cranium being recovered. (b) DP 5865 A. wingei cranium
after overlying plant material was brushed away. Tremarctos ornatus distribution (in red) [22]. Photos by Roberto Chávez-Arce.
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The concept of an earlier isthmus and interchange lag has been

challenged, citing insufficient evidence for a well-developed

isthmus prior to 3 Ma [9–11].

Fossil evidence of GABI is well represented in the United

States and parts of Mexico but sparse in southeastern Mexico

and Central America, hereafter referred to as Middle America,

where tropical conditions are unfavourable for preservation

[4,12–15]. Thus, a significant geographical and temporal gap

exists in understanding the fauna in the interchange region

itself. New discoveries from submerged caves in the Yucatán

are changing this, bringing to light an underworld of exqui-

sitely preserved fossils from the late Pleistocene, when sea

level and the water table were significantly lower during glacia-

tions. Publications on these underwater discoveries have

focused on early human skeletons [16,17], new mammalian

genera (two ground sloths and a peccary) [18–20] and a new

species interpreted to be a jaguar-like cat [21].

Hoyo Negro (HN), a submerged pit inside the Sac Actun

cave system, is the focus of this paper. The site is located on

the eastern Yucatán Peninsula, Quintana Roo, Mexico

(figure 1). Hoyo Negro represents a collapse karst feature acces-

sible from three submerged horizontal passages with floors that

are approximately 12 m below sea level (mbsl). Flooding his-

tory of the cave has been reconstructed, indicating the base of
HN was flooded by 9850 cal BP, and upper passages leading

to HN were submerged by 8100 cal BP [23]. Hoyo Negro

drops from approximately 12 mbsl at the rim to at least

55 mbsl at the floor. The HN pit is bell shaped, approximately

62 m wide at the base, and served as a natural trap for animals

moving through the cave in the late Pleistocene. Mammals dis-

covered on the surface of the HN floor include multiple ground

sloth species (including the newly named Nohochichak xibalbah-
kah) [18], tapirs, sabertooth cats, cougars, gomphotheres, bears,

canids and a relatively complete human skeleton that dates to

terminal Pleistocene [16]. In addition, bones and trackways of

extinct fauna are known from the upper passages.

Here we report two extinct carnivorans from HN, ident-

ified earlier as the bear Tremarctos and coyote Canis latrans
[16]. Representative specimens have now been collected and

we revise identifications to the ursid Arctotherium wingei
and canid Protocyon troglodytes. Both genera and species

were previously unknown outside South America.
2. Material and methods
Highly trained technical divers performed on-site photography,

filming and collecting based on direction from researchers.
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Collecting focused on diagnostic specimens, particularly well-

preserved skulls. Our emphasis here is systematic identifications;

more-detailed skeletal descriptions are in progress. Identifications

were made based on current literature. The abbreviation ‘DP’ is for

Departamento de Prehistoria, the older name for the collection at

the Instituto Nacional de Antropologı́a e Historia (INAH),

México. See supplementary material for details on photography,

collecting, preparation and radiometric dating, as well as another

figure of the crania (electronic supplementary material, figure S1).
rg/journal/rsbl
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3. Results and discussion
(a) Age and chronology
An accelerator mass spectrometer (AMS) radiocarbon analy-

sis on extracted protein from Arctotherium dentine (from

DP 5865) resulted in an age of 11 298+ 138 rcy BP (D-AMS

1 176 911). When calibrated using Calib 7.1 [24] with

intCal13 calibration dataset [25], the two-sigma age range is

12 850–13 430 cal BP. This date represents the only protein-

based radiocarbon date from the site and first absolute date

for Arctotherium wingei. While no dates on Protocyon have

been successful, systematic dating attempts on this taxon and

others from HN continue. Currently, the inclusive age range

of HN large mammals is approximately 38 400–12 850 cal BP,

with the oldest date on gomphothere [16].

(b) Arctotherium
With multiple individuals identified, the bear is the most

abundant large mammal from HN. Individuals range in

age from subadult to adult and represent the South American

short-faced bear, Arctotherium (figure 1 and figure 2). The

following combined characters diagnose the genus: notch

absent on dorsal margin of the foramen magnum, the dis-

tance between C1 and P4 less than mesio-distal length

of P4, P1–P3 compressed and arranged in a triangle, M1

metastyle reduced or absent [26]. Portions of two individuals

are reported here, DP-5864 and DP-5865.

Arctotherium is part of Tremarctinae, an endemic American

subfamily. Besides Arctotherium, this group includes Plionarc-
tos, Tremarctos and Arctodus. Plionarctos is recorded from the

late Miocene to early Pliocene and is only known from

the United States [27]. Tremarctos appeared in the Pliocene of

North America and now occurs only in South America

[22,28]. Arctodus appeared in the late Pliocene, and by the

late Pleistocene it occurred across the United States, much

of Canada and portions of Mexico [29,30]. Arctodus and

Tremarctos went extinct in North America near the end of the

Pleistocene [31].

The oldest record of Ursidae in South America is early

Pleistocene, with the appearance of Arctotherium at 0.98–

1.76 Ma [32]. Ursids are considered to be part of GABI 2, a dis-

persal pulse that occurred around 1.8 Ma [5]. Five species of

Arctotherium are recognized, A. angustidens (early–middle

Pleistocene), A. vetustum (middle Pleistocene) and three

middle–late Pleistocene species, A. bonariense, A. tarijense and

A. wingei [26,32]. Arctotherium angustidens was particularly

large [33], but over time this genus is represented by smaller

forms, culminating in A. wingei, the smallest [32,34].

Disagreements have occurred over the evolutionary

relationship of Arctotherium, Tremarctos and Arctodus, with ear-

lier morphological interpretations placing Arctotherium and

Arctodus as sister taxa [26]. Recent genetic analyses indicate
Arctotherium is more closely related to Tremarctos, and therefore

Arctotherium and Arctodus share morphologies that may relate

to their large size and/or dietary behaviour [35]. Based on

our understanding of the group, Arctotherium arose from

Tremarctos, or a common ancestor that excluded Arctodus.

The HN bear is identified as A. wingei, the only Arctotherium
species known from northern South America, with occurrences

in Bolivia, Brazil and Venezuela (figure 1) [32,36,37]. While par-

tial A. wingei skulls and isolated teeth are reported from South

America, the material is poorly represented. The remains from

HN represent the best-preserved and most-extensive record of

Arctotherium from any locality and they exhibit a high degree

of intraspecific morphological variation. These specimens

are assigned to A. wingei using a suite of characters: separate

openings for foramen rotundum and alisphenoid canal on cra-

nium, tympanic bulla inflated, greatest mesio-distal length of

M1 slightly larger than greatest labio-lingual length, shape of

M1 lingual border convex, p1–p3 arranged in a triangle, m2

entoconid with two apices [26].

In addition to HN fossils, other submerged caves of the

Yucatán are producing photographic records of Arctotherium,

and one specimen is known from a dry cave in Belize [38].

Further, a fragmentary distal humerus from another sub-

merged Yucatán cave was recently described as a new species

of cat, Panthera balamoides [21]. However, published images in

that paper are morphologically similar to Arctotherium, and

we feel this identification should be reassessed.

Arctotherium is the only known bear from the Yucatán Penin-

sula. In terms of diet, A. wingei has been interpreted as a

herbivorous omnivore like Tremarctos ornatus [39,40]. Although

T. ornatus occurs in the Andean region of western South America

today, it is not known from that continent until the early Holo-

cene [41–43]. While Tremarctos is known from North America

until the Pleistocene/Holocene transition [44], there is only

one fossil occurrence in Middle America [45]. Identification of

this specimen is tenuous because the skeleton is in a Belizean

cave. Based on the current record, we propose that competition

with Arctotherium in Middle America may have limited the

southern distribution of Tremarctos until the former became

extinct in the latest Pleistocene or early Holocene.
(c) Protocyon
Canid material from HN represents the South American genus

Protocyon (DP 5867, figure 2). The following combined charac-

ters distinguish the genus: robust skull, wide zygomatic arches

and palate, short rostrum, paraoccipital process directed

posteriorly, P4 large with small protocone, M1–M2 with

reduced or absent hypocone, M2 reduced, lower premolars

with acute and weak principal cusps, m1 without metaconid

and entoconid [46–53].

Protocyon is part of Caninae, a large canid subfamily that

originated in North America and dispersed into the Old

World and South America. The subfamily occurs in South

America by 2.5 Ma [43,52] and was part of GABI 1 [5]. By

the early Pleistocene, South American Caninae were diverse,

with multiple Lycalopex species, and the emergence of two

genera thought to be endemic, Theriodictis and Protocyon
[43,47,49,50,52,54]. Protocyon is considered to be closely

related to Theriodictis [52,55,56], which was questionably

reported from the late Pliocene or early Pleistocene of Florida

as Theriodictis? floridanus [57]. No solid records of Theriodictis
are known outside South America. Three Protocyon species
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Figure 2. Arctotherium wingei and Protocyon troglodytes from Hoyo Negro. DP 5865 A. wingei, (a) dorsal and (b) ventral view of the cranium, and (c) occlusal view
of right P4 – M2. DP 5864 A. wingei, (d ) occlusal view of right p4 – m2 and (e) lateral view of right dentary; m3 broken and missing. DP 5867 P. troglodytes ( f )
dorsal and (g) ventral view of cranium, (h) occlusal view of right P3 – M2, (i) occlusal view of right p3 – m2 and ( j ) lateral view of the right dentary. (Online version
in colour.)
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are recognized, P. scagliarum (early–middle Pleistocene),

P. troglodytes (middle?–late Pleistocene) and P. orcesi (late

Pleistocene) [49,53,54].

The HN Protocyon is assigned to P. troglodytes, known

from Argentina, Brazil, Bolivia, Ecuador, Uruguay and Vene-

zuela [53] (figure 1). Northern records of P. troglodytes led

researchers to speculate the possibility of their occurrence in

Central America as well [51]. Other Protocyon species have

only been recovered from their type localities, P. scagliarum
in Argentina and P. orcesi from Ecuador. Protocyon troglodytes
is distinguished from P. scagliarum based on the absence of an

anterior cusplet on p4, and P. orcesi based on the presence of

m3 [47,50,52]. Intraspecific variation may account for the

difference between P. troglodytes and P. orcesi [49,50,53].

As part of the late Pleistocene Yucatán fauna, Protocyon
would have been a hypercarnivorous large canid [53]. Canis
dirus, C. lupus and C. latrans are reported from Loltun Cave

in northeast Yucatán, but Protocyon was not recovered

[58,59]. Thus, the degree of geographical, temporal and

ecological overlap of Protocyon and these canids is unclear.
(d) Interchange, biogeography and evolution
This report presents the first published records of Arctotherium
and Protocyon outside South America, expanding their distri-

butions over 2000 km out of South America. Arctotherium and

Protocyon are considered to be endemic South American taxa

that developed on that continent after their ursid and canid

ancestors crossed the Panama Isthmus from Middle America

[32,43,60]. While this scenario is supported by the occurrence

of these carnivorans in South America, and lack of their fossil

remains in Middle America, the record is biased by a relative
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lack of fossil sites from the latter region. Thus, we cannot discount

the possibility that Arctotherium or Protocyon occurred in Middle

America at various times during the late Cenozoic. Further, it is

also possible that Middle America played a role in the evolution

of these genera, either through ongoing gene flow with South

American populations or origination in Middle America.

These carnivorans, recent discoveries of new ground sloth

genera from the Yucatán, and controversy about age estimates

on the development of the Panama Isthmus ‘bridge’, all indi-

cate we still have a lot to learn about GABI. Interpretations of

the fossil record suggest four main pulses of interchange,

GABI 1–4, at around 2.5 Ma, 1.8 Ma, 0.8 Ma and 0.125 Ma,

respectively [5,6]. These pulses overlap with glacial episodes,

sea-level lowering, widening of the isthmus and more-open

habitats that would have created opportunities for dispersal

of large mammals adapted to open habitats [5,13].

If the existing fossil record is an accurate representation of

Arctotherium and Protocyon through time, and these genera

developed strictly in South America, the Yucatán material

represents a reversed dispersal of these families across the isth-

mus. Further, if this migration occurred during the latest

Pleistocene, in line with existing radiometric dates, one possi-

bility is they moved north during or since the last full glacial,

between approximately 35 000 and 12 000 years ago. Because
this glacial pulse would have caused similar landscape changes

and migration opportunities as GABI 1–4, this additional

interchange could be referred to as GABI 5. Unlike earlier inter-

changes, ‘GABI 5’ involved humans and culminated with

the mass extinction of most American megafauna, including

Arctotherium and Protocyon.
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